A bromodomain-containing protein from tomato specifically binds potato spindle tuber viroid RNA in vitro and in vivo.
نویسندگان
چکیده
For the identification of RNA-binding proteins that specifically interact with potato spindle tuber viroid (PSTVd), we subjected a tomato cDNA expression library prepared from viroid-infected leaves to an RNA ligand screening procedure. We repeatedly identified cDNA clones that expressed a protein of 602 amino acids. The protein contains a bromodomain and was termed viroid RNA-binding protein 1 (VIRP1). The specificity of interaction of VIRP1 with viroid RNA was studied by different methodologies, which included Northwestern blotting, plaque lift, and electrophoretic mobility shift assays. VIRP1 interacted strongly and specifically with monomeric and oligomeric PSTVd positive-strand RNA transcripts. Other RNAs, for example, U1 RNA, did not bind to VIRP1. Further, we could immunoprecipitate complexes from infected tomato leaves that contained VIRP1 and viroid RNA in vivo. Analysis of the protein sequence revealed that VIRP1 is a member of a newly identified family of transcriptional regulators associated with chromatin remodeling. VIRP1 is the first member of this family of proteins, for which a specific RNA-binding activity is shown. A possible role of VIRP1 in viroid replication and in RNA mediated chromatin remodeling is discussed.
منابع مشابه
Virp1 is a host protein with a major role in Potato spindle tuber viroid infection in Nicotiana plants.
Viroids are small, circular, single-stranded RNA molecules that, while not coding for any protein, cause several plant diseases. Viroids rely for their infectious cycle on host proteins, most of which are likely to be involved in endogenous RNA-mediated phenomena. Therefore, characterization of host factors interacting with the viroid may contribute to the elucidation of RNA-related pathways of...
متن کاملDetection and analysis of hairpin II, an essential metastable structural element in viroid replication intermediates.
In (-)-stranded replication intermediates of the potato spindle tuber viroid (PSTVd) a thermodynamically metastable structure containing a specific hairpin structure (HP II) has been proposed to be essential for viroid replication. In the present work a method was devised allowing the direct detection of the HP II structure in vitro and in vivo using a biophysical approach. An RNA oligonucleoti...
متن کاملReplication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein
Viroids are plant-pathogenic molecules made up of single-stranded circular non-coding RNAs. How replicating viroids interfere with host silencing remains largely unknown. In this study, we investigated the effects of a nuclear-replicating Potato spindle tuber viroid (PSTVd) on interference with plant RNA silencing. Using transient induction of silencing in GFP transgenic Nicotiana benthamiana p...
متن کاملAccumulation of Potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars.
To better understand the biogenesis of viroid-specific small RNAs and their possible role in disease induction, we have examined the accumulation of these small RNAs in potato spindle tuber viroid (PSTVd)-infected tomato plants. Large-scale sequence analysis of viroid-specific small RNAs revealed active production from the upper portion of the pathogenicity and central domains, two regions prev...
متن کاملSmall RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants.
The tomato (Solanum lycopersicum) callose synthase genes CalS11-like and CalS12-like encode proteins that are essential for the formation of callose, a major component of pollen mother cell walls; these enzymes also function in callose formation during pathogen infection. This article describes the targeting of these callose synthase mRNAs by a small RNA derived from the virulence modulating re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 77 17 شماره
صفحات -
تاریخ انتشار 2003